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AUTHOR'S SUMMARY

[n Ref |, the form was found of the main nonlinear term of the expansion of the
lift voefficient for a rectangular wing. In this paper, the form is found of all terms
nt the expansion of the lift and moment coefficients. Generalisations are given tor the

case af certain non-steady flows. Results of calealations are presented.
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| Nonlinear etffects of torces ot an ideal medium acting on a wing are, in general,

voverned by the presence of a surface of discontinuity of the tangential components of
i

the velocitv, Within an accuracy of the order of 7 | these effects can be found by the
method of plane sections.  Here o is the angle of incidence, 18 the aspect ratio.

v varies within the limits:

(1=-1)

S

wvhere i1s a constant.

b R

By virtue of (1=1), 7 >~ 7 | which makes it pussible, in calculation, to replace
sin « by v . The problem concerning the movement of o rectangular wing comes down to
one of finding a plane, non-steady scparated flow of an ideal liquid about a plate
instantaneously brought into motion along its normal, with a velocity Vo Thercupon,

the following relationship arises:
W= v, Vo= b, (1-2)

where Vi is the velocity of motion of the plate; h is the distance between the leading
edge of the wing and the plane of the section of the wing normal to the flow; V. is the
velocity at infinity; t is the time elapsed from the moment of the start of the motion
of particles of the medium in the given section.

The case of non-steady movement of a rectangular wing also reduces to this plane

problem when the wing is momentarily brought into motion with a constant velocity V .

ot is the time elapsed from the start of the wing motion, and hO is the chord

of tne wing, then:

h i
v, for 0 <h <V g
R = . (1_3)
t f ! < h <
0 for \‘_L() h hO

Then, as before, t 1is the time elapsed from the start of movement of particles of the

medium in the given section.
If the wing is placed in a shock tube, and if ty is the time elapsed from the
start of movement of the particles of the medium near the leading edge of the wing, then

for the sections:

0O < h < Vit. |, L=i:3—, (1-4)

while, in sections V'-[() " h < h() , motion is absent. In fact, in the vicinity of

h = V"LO , there is a transition zone. However, its rejection leads to an error of the
.2

same order, o,

The solution of the two-dimensional problem makes it possible to find the drag force

on the plate Y(t) . This force is numerically equal to the normal force acting on a




small part of the wing included between scctions h and h + "h | relative to the
distance between the sections ‘h . Therefore, the following expressions arc obtained for

the 1ift coefficient Cy and for the moment coefficient M, relative to the leading
z

edue.
h h
n 0
2 2
Cv = 7 J Ydh , MV = ey hydh , (1-5)
- RIVARS ‘ VTS
\ s v oS
where Y must be expressed in terms of h , Vioooand v, -
In practice, it is more convenient to use the impulse D(U) instead ot the force
Y(t)
‘o
pCHY = 1 vdt . (1-6)

Thus the problem of investigation o! the characteristics of the wing FV ind MZ reduces
to the determination of the Impulse D(t) as a function of the time, for the two-
dimensional case of non-steady separated flow of a plane [low of an ideal liquid around a

plate.
2 If the surfaces of tangential discontinuity formed near the cdge of the plate are
known, then the velocit: field can be found according to known formulae. Therefore, the
problem of finding D(t) comes down to finding these surfaces.

The equations of motion for surfaces of tangential discontinuity can he written in

the following !.rm:

- - _ dw* 5
UCr,t) + (VIT,t)) = T (2-1)
W(r,t) , T =720, T (t)
0 0
(2-2)
Im{U(r,t) +(V(r,en) = 0

Here W 1is the point of the complex plane lying at the surface of the discontinuity;
is the potential jump at point W ; FO is the potential jump at the edge of the plate;

U " the complex velocity of the non-separated flow of the stream vn/i about the plate,
directed towards the plate along the normal; V 1is the complex velocity induced by
discontinuities in the presence of the plate (discontinuities adjoin its edges); (V) is
the half-sum of the values V , calculated for both sides of the discontinuity at the

point W . The superior asterisk denotes a complex-conjugate value.

The derivative in the right-hand part of (2-1) applies for the condition ' = const.
Equation (2-1) is obtained on the basis of the known properties of a tangential discontin-
uity, its impermeability and the absence of a pressure jump. Equation (2~2) is obtained
on the basis of Zhukovskii's postulate. The systems (2-1) and (2-2) are complete in that

they contain the functions W(I,t) and FO(L) , but they must be supplemented by a
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relationship between W(I,t) and the functions U and (V) . This relationship is
conveniently found by introducing the auxiliary complex plane 2z . Without destroying the
penerality, it is possible to consider the half-width of the wing as being equal to unity,
and the edges as lving at points 1+ and -1 in the complex plane W . Then 2 is
defined by the function:

s (2-3)

mapping the exterior of the segment (-1, +1) of the plane 2z on the exterior of the

’

segment (=1, +i) of the plane W .

The relationship between W(7,t) and U, W(I,t) and (V) 1is given by the follow-

ing expressions:

. dz , _ dz _
U = u T’ (V) = (wv) T’ (2-4)
. ‘0 ‘o
_'n _ ar 1 dr _
v“s T vy = 2ni J z -z, 271 j z - z: : (2-5)
0 0

Here the infericr asterisk indicates a dependence of the given function on the variable of

Intesration.

The expression for D(t) 1is obtained on the basis of formulae in Ref 2:

D = 7 +4AD , (2-6)
A‘O

"D = 20Re J z2,dr . (2-7)
0

Let us change to new variables. Let us suppose that:

= 1 -. O<sws1 . (2-8)

Moreover, in order to abbreviate the writing of functions, I and 2z will be given a
supplementary definition for the case of negative values of =« , in accordance with the

following expressions:

Tm) = T(w) , 2(=u) = -2 () . (2-9)

In terms of these variables, the equations of motion take the following form:




6
- () IE - A L LG
(pC0) plz)E + (1 ) T peo) . O,
.l R (2-10)
S “ud NS
plz) = -, ploy = | 2 Eo= ot
2T 7y J 7% ! A
=1 -1 ) i
v = yp(0) 2=11)
+1
D= ;v yRe j zy i, (2-12)
n
-1
where A = (o) =1 for « >C and =-! for w < 0 . The problem reduces to the
solution of system (2-10) and the introduction of results in (2-11) and (2-12).
3 Let us investigate the principle of finding the solution.
Let the solution of a certain physical problem reduce to the solution of the
operator equation:
Fz = 0, z = z(w,s) (3-1)

which, by assumption, has a unique solution, and this solution can be represented in the

z = j{: a ,a (w, ¢+ (s) (3-2)
n'n’ “n n

following way:

n=0
(i s vene s s o Twr coproct o cas boow maldc In 00
- * 0 , (3-3)
N 0 for s -0 (3-4)
;+] +> 0 for s - n=0,1,2,... . (3-35) W
n

It is necessary to find the functions ¢n(s) . In the general case, for this purpose
equation (3-1) must be solved. However, if the operator F has certain special proper-
ties and if, from physical considerations, one can obtain additional restrictions on the
desired solution 2z , then the function ¢n can be found even without the direct solution

of (3-1).
Let us consider the case when the operator F has the following three properties. -

(1)  For any function of 2 which can be represented as in (3-2) to (3-5) and which
belongs to a certain acceptable region of definition, the expression Fz can be written

in the following form:
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Iz = g (A a)(r ) {3-6)
n n
n=0
here a and : are infinitely-dimensioned vectors with the coordinates a and ‘Y
1
respectively; A and :n are certain operators acting on a and ! . We observe that,
n
using only the condition (3-5), it is not possible to place the expressions 111 as i
1
function of s in increasing order. It is not, for example, possible to compare the
orders of the functions tO and :Od¢0/ds . However, in expression (3-6) there are also
terms which can be arranged in an order relationship established on the basis of
conditions (3-~5).
(2) 1f, using conditions (3-5), anv term of (3~6) having a higher order than some other

term in the latter expression is rejected, then only a finite number of terms depending

solely on g and 0 remain.

For the sake of simplicity, let us consider that only two terms remain. Let us call

this residue the dominant part (DP):

] = A Do . Y=
DP(Fz) (Ala0)<f]b0) + (A,a0) (4,8) (3-7)
el s e corre e lop e Poen walde to (F=0
(3) The dominant part of the increment Fz - F(z - zk) , where:
2, = Z a o, o (3-8)
n=k
also consists of a finite number of terms, each of which depends only on a, a s by s
oo Here the dependence on a, , ¢ is linear, and the operators determining this

k k
dependence are independent of k . Accordingly, we shall investigate the case when the

dominant part of the increment consists only of two terms:
Y - T - ] - [ SECRY {ar P 2 (s A . -
DP(Fz = F(z = 2,)] [A]<a0)ak)( ](¢O)ok) + \Az(ao)ak}[az(,o)¢kj (3-9)

Depending on the vector % , in the expression (3-7), the dominant term will be either
the first, or the second, or both terms will have the same orders. The expression (3-6)
may similarly equal zero only in the case when the sum of each one of the dominant terms

is separately equal to zero. Therefore, a can satisfy one of the following equations:

0

Aa = 0 , (3~10)

[}
<

(3-11)

A3y ’




vadel A = 0 )
(pagley + Aa, = :
R L - () . 9
"l"‘())/("z"o) = 0 > (3-12)
0
v = const.
] J

It 18 possible to give preference to one of the equations (3=10), (3=11) or (3-12)
on the basis of additional restrictions op the solution 2z obtained from physical consid-
erations. In the piven case, the condition of a unique solution Is sufficient to justify

rejection of equations (3-10) and (3=11), since they do not determine the tunction
In the third case, however, a unique solution is possible.

If (3-7) were to consist of o terms, then it would be necessary to investigate
n . . . .. . L
27 - 1 equations. Functions ay tl are found in a similar manner. It is sufficlent
Anb * 7 where 2 is
0'0 P2 |
determined by the sum (3-8), and to requirce that the dominant member of the expression

merelv to carry out a substitution of the variables =z =

F(aO:O + zl) =0 . Thus:

(F(a s )) (3-13)

Fla. ¢ &+ Zl) = P(aO:O) + 0

+ zl) - F(a0¢

0 0

and, as soon as a, and :O are known, then the dominant member (DM) of the first term

can be picked out directly. Moreover, by virtue of (3-12), its order is higher than zero.

Taking condition (3-6) into consideration, let us suppose that:
M 4 a. = : v & 3-14
D1{F(30¢0)) B agde (6)) - (3-14)

From the expressions contained in brackets in (3~13) we preferentially take out the

dominant part. Takirg (3-9) into consideration, we obtain:

d H - a,. v ] = (A ( a it B ] AT R + P -15
Dph‘(aoun + ZI) F(d()uO)J "Al(“”)dl’l('I(LO)IIJ + ,\!(.1”).1]11,;'2(40)_” (3-13)

1f is not the solution of problem t3-1), then B](an) #0 and consequently, the

a.t
0°0
order of (3=14) cannot be less than the crder of the terms in (3-15). On the other hand,
none of the terms in (3-15) can have an order less than that of (3-14), since, in such a
case, for a the trivial solution i 0 would be found. One of the following three

systems of equations is possible for a

I'l..
Bl(ao) + LILAI(JO)J

(3-16)

1 1
Py : - =~ = const.
L ! Q»O) I]/'I(QO) Ll const J
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B TlAl(a ) = 0
Hl(lo) + (ll\o(lu)ll}
(o000 Vo (e = vz = const.
AR M Y I IR | }
B (a ) + c](A'(a )a ) + cz(A'(a ya.| = 0
170 | 1707 1V 2707
!
s Y M (b = ¢ = cons
(,I(,O),IV,I(;O) < const.
] ) 2
{XZ( 0)'.]//.|( 0) ¢| = const.

(3-17)

r . (3-18)

System (3-16) or system (3-17) can be rejected If its solution is such that the expressions

P ):l and :;(:O)fl have cqual orders.

Let us suppose that all values of a , & dare found up to the number n = k - |
PP n p

We write:

!
. k=1
a ! = z
n'n
n=0
k=1 . .
Then, 2z = 2 + 7 - Repeating the calculation, we ob
k-1 , .
Bt } oAt ) =
R fo Gy
, [ k=l !
ERTTEATEY AR
s T e At da ) =
" : KR e
{ k-1 2
TR T O = ¢ =
':"H)'k}/'k ) Cp
k-1 1/ \ 2
1 R ‘ta da, . AT (G
B, ta ) o+ k‘Al(lO)lk/ + ‘U \3(10
- k=1 I
o : (: = =
ERRENY kJ/'k ) “k
. k-1 2
e f 4 . . . = =
('3(‘0)‘1(1/1((' ) ¢
k-1 k=) . .
where a and 4 are vectors with the coordinates
k=1. k=1 . . .
Bk(a ).k(f ) is the dominant member of the expressi

tain:

const.

const.

)ak)
const.

const.

a 3
<n v

on sz

JR——

(3-19)

(3-20)

(3-22)

Systems (3-16) and (3-17) can be rejected on the basis of the same considerations.
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The expansion (3=2) under the conditions of 3=5) and tor wiven values ol
. 1s unique , 1! two tuncticas coincide to the desired extent for the small range
n
0~ s s >0, then both they and thelr expansions coincide over the whole range of the

Jetermination.

It is sufficient, therefore, that the properties of sub-points (1) to (3) shonld be
maintained merely tor small values of s

The properties of sub-points (2) and (3) are directly associated with the
I

existence of the Fréchet derivative of the operator F . If, for example:

F(z' + 2") = Fz' + " (z2")z" + o(z") |, (y=27)
where F'(z') 1s a linear unirorm operator depending on 2z (Fréchet derivative), then
the properties of (3=7) und (2-8) are maintained if:

um(r'upz"‘i/(F'(z})z"j = for /s e 0 (4-24)
Thereupon the following formulae are valid:
DP Fz = DP F(a _» (3-25
0’0’ ' )
) Yy - _ 3 -~ f;v a 4 N (=0
DP{Fz - F(z = 7)) DPLF" Cagig)a @ | }=26)
4 Applvinuz the above considerations to equation (2-10), let us first of all formulate
additional restrictions of a physical character:
(1) the absence of self-intersection of the taneential discontinuity:
z(u],s) - Z(mq,S)i/[z(l,S)[ > f(A],)j) (4=1)
(Fittor'y mater  mincy covpections yose G v oo (E=0) oal (=0)0)
where :(ul‘nv) is a certain function;
f(ul,uz) # 0 for - * s
(2) the boundedness of the velocitv jump at the tangential discontinuity:
42 G, 8) /e
e s> et T 0 4=2
z(1,s) ‘ (4=2)
where ¢' 1s a certaln constant;
3) the boundedness of the total circulation:
y A (4-3)
(4) the tangential discontinuity sprines from the edge:

I'1

¢

090
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2(0,8) = 0 ; (4=4)

(5) moreover, we suppose that the series:

da 4z
q Qn = 50 (4=5)
n=0
converges uniformly with respect to « .
From (4-1), (4-2) and (4~5) it follows that for any values of

. z‘(mls) - zl(mzs)
lim

— - 0 for s -~ 0 . (4-6)
bo30(wy) = dgagley)

Therefore, for small values of s :

I ! }
2(wg,s) = z(w,s) zl(m*,s) - z!(w,s)

¢O(ao(w*) - ao(w)] -
Oo(ao(w*) - ao(w))

m

k
) 1 - (- zl(m*,s) - zl(m,s)> (4=7)
¢O[a0(m*) - ao(w)) by ¢O(ao(m*) - ao(w)]

This makes it possible to write p(z) 1in the form (3-6). An analogous result is
obtained for the operator E , and, consequently, for all the left-hand side of equation
(2-10). The properties (3-7), (3-8) of the left~hand side of (2-10), written in the form
(3-6) can be directly verified. Here formulae (3-25) and (3-26) may be used. Denoting
by the symbol F the operator included in the left-hand side of (2-10), we obtain:

+1
| r Sdw 8 dw ¢6 dao v 8dw
DP Fz = T3 J e - E— (1 - w T + a, } = . (4-8)
i¢0|aol ) ox 4 “o  Tox 0 2 0*

As in the case of point (3), we obtain three equations, two of which can be rejected not

only on grounds of the conditions of uniqueness. For example, let us look at the

| dag | s, du .
( w) qo ao , :;g: . (4-9)

By virtue of (4-3) and (2-11),

equation:




- - . - —_ .
12
+1
* * du
%
j £ 0,
-=a
*
_l ()
therefore (1l - w) 4 a, + a = 0, a = ¢ (1 =) ¢ = const. ;
dw O 0 J ! ’ |
which contradicts condition (4=4). (F7ton's noto: more minore coppections hope, )

The second equation:

- j ——— = 0 (4=10)

has the following solution:

which does not satisfy condition (4-2), since SaO/aw =0 for w=1 ., In this way, if
a solution of the problem in the form (3-2) exists, then a0¢0 satisfies the system
(3-12). 1In so far as ¢]¢0 = ¢65 (veditor's note: the original has ¢Z ), and

= &' s
¢2¢0 = ¢0/¢0 , then, for ¢0 we obtain:

2 0 043 ;
0% = © > by = (3¢)s)® (4=11)

' =
where % d¢0/ds .

Since the constant factor associated with ¢, is insignificant, then, for

0

definiteness, it is possible to take c? =4 | which by virtue of (3-12) unambiguously

determines the equation for a

0"
Transferring attention to the desired ¢l, ¢2, Ceey ¢k we first obtain:
o +1 a 8 +1
*O% CoA T Ak
DP(Fz - F(z - 2z, )] = LY (R KE g+ kK e
k 4 . 2 2 a —ao* *
% | %] \ -1 2ox 3
Zak + 84 dw ! 8, dw
- Re 2 Za. a. - a
*
ao a0| e 0 A 0 0
' ta s da, ' 5.4
*x%0 i\ W e % xdw
-—1{a, + 2(1 - w) — dw + (1 - @) ——
t2 0 dw 2 dw =3
0 -1 2o -1
+1]
¢ dag a, 404 8 ydw
*(»— (I—w)m——f—dw-ak Y
0 agx 2 0*
cesea (4=12)

090¢ L1
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.. 5 » then with an accuracy of up to the value of a constant multiplier of the
S1ince :0 = g .

N ,
- . - . _ . -+ - . . .
function b':o 1s equal to the function I/:n . Theretfore we have the situation

described in point (3). Thus:

Extracting the dominant member from the expression F(noto) , bearing in mind equation
1

(3~12) and the function @0 = s3 , we obtain:
+1 d +1 4 2
1 _1 . k‘* . S DY a
DP F[aOSJ] = -5 3 j - - j — iRe — .
4 T 4 o7 Tox lag |

s

=

Thus, Investigating the systems (3-16) to (3-18) according to

"1%9 =
principles laid down in point (3), the first two systems can be rejected. From the third

system, with an accuracy of up to the value of a constant multiplier, we obtain:
¢](s) = 5 . (4-13)

Applying the method of mathematical induction for ¢, , we find:

k

(23 K = 0,0,2,... . (4=14)

¢k(s)

Introducing the result found into (2-11):

™

o - (2n+1)/3 _ _
y = j{: \nS N Yn = const. (4=15)
n=0
From (2~12), it follows that:
AD = opv Z szn/3D s L = const. (4-16)
n n n
n=1

Using (4-16), (1-2), (1-5), (1-6) and (2-7), we obtain:

@

c. = aAn/2 + jai Z Dn(Za/)\)zn/3 ,

n=1
(4=17)

2
M = 0) -2-;1—2-2—3- Dn(zﬂ/.\) n/3 .
1

n=

— - e



For non-steady flows, we use (1-3) and (1-4); accordingly, we obtain ¢ , M7 and v;,
v é

¢ = /2 + Ll z |:£ n[—! - l] + IjID (Zw’,/\)zn/‘}
y 3 ’ n

M"
z

n=1 . (4-18)
2 I n/”
M= o Z [r S+ ': 3 +% (+ - ’,)]Dn(?q’,/%) n/3
n=1
"= 2+ L) D (23"/))2“/3
y n
n=1i
(4-19)
" B n P 2n/3 o= 14
M arg e 3 Dn(Luz,/)\) ’ El t()\’,M/h()

In order to find the coefficients Dn , 1t is necessary to solve the equations for
a in systems (3-12) and (3-22). However, since, when one uses numerical methods with the
application of the regularisation principles, there occurs a convergence not only in the
case of the desired functions, but also in the case of all their derivatives, then the
coefficients Dn can be found by means of a treatment of the results of the numerical
calculation of the initial problem ((2-1) to (2-5)). 1In Fig | is sh%wn Ehe dependence,
found by the numerical calculation of the initial problem, of Acya 34 3 as a function

of 2ar .

It is noiiceable that, at point O , there is a vertical tangent. This same
quantity, as a function of (2a/>)” does not have a vertical tangent and, in the interval
(0,1), it can, with a high degree of accuracy, be found approximately using the following

polynomial (cf Fig 2):

l.c
—Y = 361 + 1.208 - 0.558% ~ 0.25¢° . B = [2)—0‘)é (4-20)
4 |

The coefficients of this polynomial determine the first four coeficients Dn :
DI = 4,55 , D2 = 1.5 , D, = -0.692 , D4 = 0.314 . The constant g in the formula of
A.A. Nikol'skii is numerically equal to the first coefficient of the polynomial (4-20).

A comparison of results of the calculation and of experiment is given in Ref 5.
In conclusion, two observations may be made.

Equation (4-10) corresponds to the case when, in the flow, the pressure is admitted
of a point force applied to the end of the tangential discontinuity. Thereupon, the

function ¢0 can be determined if one defines the law of change of this force.

090Z 11
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By virtue of formulace (4=17), there is the tollowing ditterential relationship

v
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